Abstract

We consider two related models for the propagation of a curvature sensitive interface in a time independent random medium. In both cases we suppose that the medium contains obstacles that act on the propagation of the interface with an inhibitory or an acceleratory force. We show that the interface remains bounded for all times even when a small constant external driving force is applied. This phenomenon has already been known when only inhibitory obstacles are present. In this work we extend this result to the case of – for example – a random medium of random zero mean forcing. The first model we study is discrete with a random forcing on each lattice site. In this case we construct a supersolution employing a local path optimization procedure. In the second, continuous, model we consider a random heterogenous medium consisting of localized small obstacles of random sign. To construct a stationary supersolution here, we need to pass through sufficiently many blocking obstacles while avoiding any obstacles of the other sign. This is done by employing a custom percolation argument.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.