Abstract

The ability of a network of nonlinear systems to synchronize onto the desired reference trajectory in the presence of one or more leader nodes is known as the pinning controllability problem. This paper studies the pinning controllability of multiagent networks subject to three different types of noise diffusion processes; namely, noise affecting the node dynamics, the communication links, and the pinning control action itself. Sufficient pinning controllability conditions are derived depending on the node dynamics, network structure, noise intensity, and control parameters. Counterintuitively, it is found that under some specific conditions noise may enhance the pinning controllability of the network making it easier to drive all agents toward the desired collective behavior. The effectiveness of the theoretical results is illustrated via two application examples arising in the context of gene regulatory networks and synchronization of chaotic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.