Abstract
This paper proposes a self-organizing adaptive fuzzy neural control (SAFNC) for the synchronization of uncertain chaotic systems with random-varying parameters. The proposed SAFNC system is composed of a computation controller and a robust controller. The computation controller containing a self-organizing fuzzy neural network (SOFNN) identifier is the principle controller. The SOFNN identifier is used to online estimate the compound uncertainties with the structure and parameter learning phases of fuzzy neural network (FNN), simultaneously. The structure-learning phase consists of the growing of membership functions, the splitting of fuzzy rules and the pruning of fuzzy rules, and thus the SOFNN identifier can avoid the time-consuming trial-and-error tuning procedure for determining the network structure of fuzzy neural network. The robust controller is used to attenuate the effects of the approximation error so that the synchronization of chaotic systems is achieved. All the parameter learning algorithms are derived based on the Lyapunov stability theorem to ensure network convergence as well as stable synchronization performance. To demonstrate the effectiveness of the proposed method, simulation results are illustrated in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.