Abstract
The Poincar\'e torsor of a Shimura family of abelian varieties can be viewed both as a family of semi-abelian varieties and as a mixed Shimura variety. We show that the special subvarieties of the latter cannot all be described in terms of the group subschemes of the former. This provides a counter-example to the relative Manin-Mumford conjecture, but also some evidence in favour of Pink's conjecture on unlikely intersections in mixed Shimura varieties. The main part of the article concerns mixed Hodge structures and the uniformization of the Poincar\'e torsor, but other, more geometric, approaches are also discussed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.