Abstract
We develop a theory of enlarged mixed Shimura varieties, putting the universal vectorial bi-extension defined by Coleman into this framework to study some functional transcendental results of Ax type. We study their bi-algebraic systems, formulate the Ax-Schanuel conjecture and explain its relation with the logarithmic Ax theorem and the Ax-Lindemann theorem which we shall prove. All these bi-algebraic and transcendental results extend their counterparts for mixed Shimura varieties. In the end we briefly discuss the André–Oort and Zilber–Pink type problems for enlarged mixed Shimura varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.