Abstract

For pt.I see ibid., vol.39, no.12, p.2566-74 (2001). To estimate integrated precipitable water vapor along with liquid water path and water vapor effective profile (i.e. standard atmospheric profile approximation), utilizing the Special Sensor Microwave/Imager (SSM/I) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometers, an operative procedure was developed and assessed. This procedure is based on a fast nonlinear physical inversion algorithm (PIn) developed by the authors. A large data set of near-coincident TMI and SSM/I data acquisitions were collected and used to supply the procedure. Retrieved parameters were compared against retrievals achieved with well-accepted statistical algorithms, and consistency between TMI and SSM/I retrievals was confirmed. As far as TMI and SSM/I precipitable water retrieving consistency is concerned, this research revealed a linear relationship up to 20 kg/m/sup 2/ and a general overestimate of TMI retrieving, for higher values. A new algorithm for obtaining integrated precipitable water from TMI brightness temperatures was introduced and the goodness of its accuracy was reported. The procedure proved to be reliable and portable and its integrated precipitable water vapor retrieving was assessed to be as accurate as the best radiometric retrieving algorithms, reported in literature. For SSM/I data, developed-procedure liquid water path estimates seemed to be in good agreement with statistical retrievals. Eventually the procedure provided effective water vapor vertical profiles which belong to a deterministic distribution area characterized by an upper and lower limit; it was confirmed that SSM/I and TMI vertical profile distribution areas mainly overlap even if they are characterized by different sensitivities to profile parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.