Abstract
ObjectiveAs an alternative to surgical excision and magnetic resonance-guided thermal high-intensity focused ultrasound ablation of uterine leiomyoma, this work was aimed at pilot feasibility demonstration of use of ultrasound-guided boiling histotripsy for non-invasive non-thermal fractionation of human uterine leiomyoma ex vivo. MethodsA custom-made sector ultrasound transducer of 1.5-MHz operating frequency and nominal f-number F# = 0.75 was used to produce a volumetric lesion (two layers of 5 × 5 foci with a 1 mm step) in surgically resected human leiomyoma ex vivo. A sequence of 10 ms pulses (P+/P–/As = 157/–25/170 MPa in situ) with 1% duty cycle was delivered N = 30 times per focus under B-mode guidance. The treatment outcome was evaluated via B-mode imaging and histologically with hematoxylin and eosin and Masson's trichrome staining. ResultsThe treatment was successfully performed in less than 30 min and resulted in formation of a rectangular lesion visualized on B-mode images during the sonication as an echogenic region, which sustained for about 10 min post-treatment. Histology revealed loss of cellular structure, necrotic debris and globules of degenerated collagen in the target volume surrounded by injured smooth muscle cells. ConclusionThe pilot experiment described here indicates that boiling histotripsy is feasible for non-invasive mechanical disintegration of human uterine leiomyoma ex vivo under B-mode guidance, encouraging further investigation and optimization of this potential clinical application of boiling histotripsy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.