Abstract

This work evaluated the performance of real rare earth elements (REEs) wastewater purification and carbon dioxide (CO2) fixation by Chlamydomonas sp. YC with pilot-scale airlift-photobioreactors (AL-PBRs), tubular photobioreactors (TB-PBRs) and raceway ponds (ORWPs) under high-temperature outdoor conditions in summer. The obtained results showed that Chlamydomonas sp. YC at 1 g/L oyster shell piece (OSP) and 3 % CO2 had the highest biomass (1.9 g/L) and NH4+-N removal efficiency (34.0 %) during the REEs wastewater treatment. Among the selected photobioreactors, Chlamydomonas sp. YC to treat real REEs wastewater at 3 % CO2 under high-temperature outdoor conditions attained the highest biomass (2.3 g/L) in the TB-PBRs with the best NH4+-N removal efficiency (43.0 %). Furthermore, the input cost and CO2 net sequestration evaluation revealed that TB-PBRs was more economical photobioreactors to treat REEs wastewater and fix CO2 by Chlamydomonas sp. YC, providing some vital scientific details for REEs wastewater and CO2 fixation by microalgal biotechnology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call