Abstract

The use of new adjuvants in vaccine formulations is a subject of current research. Only few parenteral adjuvants have been licensed. We have developed a mucosal and parenteral adjuvant known as AFCo1 (Adjuvant Finlay Cochleate 1, derived from proteoliposomes of N. meningitidis B) using a dialysis procedure to produce them on lab scale. The immunogenicity of the AFCo1 produced by dialysis has been already evaluated, but it was necessary to demonstrate the feasibility of a larger-scale manufacturing process. Therefore, we used a crossflow diafiltration system (CFS) that allows easy scale up to obtain large batches in an aseptic environment. The aim of this work was to produce AFCo1 on pilot scale, while conserving the adjuvant properties. The proteoliposomes (raw material) were resuspended in a buffer containing sodium deoxycholate and were transformed into AFCo1 under the action of a calcium forming buffer. The detergent was removed from the protein solution by diafiltration to a constant volume. In this CFS, we used a hollow fiber cartridge from Amicon (polysulfona cartridge of 10 kDa porosity, 1mm channel diameter of fiber and 0.45 m2 area of filtration), allowing production of a batch of up to 20 L. AFCo1 were successfully produced by tangential filtration to pilot scale. The batch passed preliminary stability tests. Nasal immunization of BALB/c mice, induced specific saliva IgA and serum IgG. The induction of Th1 responses were demonstrated by the induction of IgG2a, IFNγ and not IL-5. The adjuvant action over Neisseria (self) antigens and with co-administered (heterologous) antigens such as ovalbumin and a synthetic peptide from haemolytic Streptococcus B was also demonstrated.

Highlights

  • Over the last decade, there has been a flurry of research on adjuvants for vaccines, and several novel adjuvants are in licensed products or in late clinical stage development

  • AFCo1 is an efficient adjuvant of Neisseria proteoliposome antigens (PLn) Table 1 shows that AFCo1 obtained by crossflow diafiltration system (CFS) induced high serum IgG and IgG subclass antibody responses against antigens in the Neisseria Proteoliposome when administrated by the i.n route

  • Previous studies have demonstrated the production of AFCo1 on a lab scale and preliminary work at higher scale demonstrated that CFS could be used to obtain larger amounts of cochleates [4]

Read more

Summary

Introduction

There has been a flurry of research on adjuvants for vaccines, and several novel adjuvants are in licensed products or in late clinical stage development. The success of adjuvants in enhancing the immune response to recombinant antigens has led many researchers to re-focus their vaccine development programs. Successful vaccine development requires knowing which adjuvants to use and knowing how to formulate adjuvants and antigens to achieve stable, safe and immunogenic vaccines. In addition to the demonstration of safety, immunogenicity and protection in preclinical would ensure the production of a large scale batch of a safe and immunogenic adjuvant

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call