Abstract

The functional photoelectric materials based on bismuth oxyhalides (BiOX, X = Cl, Br and I) have been widely used in the field of photo-electrochemistry (PEC) due to their excellent physical, chemical and optical properties. Herein, a series of BiOX nanoflowers conjugated water-soluble pillar[5]arenes functionalized Au (Au@WP5/BiOX) modified PEC sensor are constructed and investigated for the PEC detection of serotonin. Upon exploring the physical properties, such as size, visible light absorption capacity, band gap and impedance, of the three BiOX materials, it is discovered that BiOBr is more effective in detecting 5-HT due to its high redox ability, moderate band gap (∼2.03 eV), and low impedance. BiOBr can provide a high and stable starting photocurrent compared to the other two bismuth oxyhalides. When used in acidic or neutral environments, 5-HT with a positive charge can undergo electrostatic adsorption and host-guest complexation behavior with WP5, which has a negative charge. By using WP5, the recognition ability of the material to 5-HT molecules can be enhanced, and the adsorption of 5-HT molecules on Au@WP5/BiOBr can be accelerated. The local surface plasmon resonance effect (LSPR) of gold nanoparticles (Au NPs) can accelerate the electrochemical reaction rate and charge transfer rate, which ultimately leads to the amplification of the photocurrent signal. As a result, the 5-HT detection sensor based on Au@WP5/BiOBr has a wide detection range from 0.01 to 100 μM and a low detection limit of 3 nM (S/N = 3) compared to other sensors, including Au@WP5/BiOCl and Au@WP5/BiOI. The proposed PEC sensor also exhibits good stability and selectivity, making it a promising strategy for detecting biological small molecules using pillar[5]arene functionalized PEC active materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call