Abstract

An organophosphorus-catalyzed method for the synthesis of unsymmetrical hydrazines by cross-selective intermolecular N-N reductive coupling is reported. This method employs a small ring phosphacycle (phosphetane) catalyst together with hydrosilane as the terminal reductant to drive reductive coupling of nitroarenes and anilines with good chemoselectivity and functional group tolerance. Mechanistic investigations support an autotandem catalytic reaction cascade in which the organophosphorus catalyst drives two sequential and mechanistically distinct reduction events via PIII/PV═O cycling in order to furnish the target N-N bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.