Abstract

Metal hydrides have wide applications in energy science. A large pressure gradient propels the hydrogen atoms out. A piezovoltaic device, a pressure gradient-driven battery, can therefore be realized when the migrations of protons and electrons are separated by different conductors. Here we investigate the piezovoltaic performance of PdHx with various proton conductors as electrolytes and experimentally detect an output current of ≲40 nA and a voltage of ∼0.8 V for a 3 μg sample. We also demonstrate the escape of hydrogen atoms from a palladium lattice under an increasing pressure gradient using X-ray diffraction. The relationship between piezovoltaics (chemical process) and piezoelectricity (physical process) is like that between a chemical battery and a capacitor. Our work demonstrates the piezovoltaic application of metal hydrides and provides a new way to convert mechanical energy into electrical energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.