Abstract

We theoretically study the electromechanical behaviors of a laminated thin-film piezoelectric semiconductor (PS) composite plate with flexural deformation. The nonlinear equations for drift currents of electrons and holes are linearized for a small carrier concentration perturbation. Following the structural theory systemized by R. D. Mindlin, a system of two-dimensional (2D) equations for the laminated thin-film PS plate, including the lowest order coupled extensional and flexural motion, are presented by expanding the displacement, potential, and the incremental concentration of electrons and holes as power series of the plate thickness. Based on the derived 2D equations, the analytical expressions of the electromechanical fields and distribution of electrons in the thin-film PS plate with an n-type ZnO layer subjected to a static bending are presented. The numerical results show that the electromechanical behaviors and piezotronic effects can be effectively controlled by the external applied force and initial concentration of carriers. The derived 2D equations and numerical results in this paper are helpful for developing piezotronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call