Abstract

Elastic constant C_{11} and piezoelectric stress constant e_{1,11} of two-dimensional (2D) dielectric materials comprising h-BN, 2H MoS2 and other transition metal dichalcogenides (TMDCs) and -dioxides (TMDOs) are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained by ab-initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows to express the inner strains contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h- BN versus MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.