Abstract
In a recent paper [Karraï and Grober, Appl. Phys. Lett. 66 (1995) 1842], a new technique was developed in order to control the distance separation between a tapered metal-coated optical fiber tip and the surface of a sample. This new technique is based on a piezo-electric tuning fork used as a shear-force detector. The fiber tip, which is attached along one of the arms of the tuning fork, acts as a shear-force pick-up. We present in this article the idealized model analysis that leads to the design parameters of a tuning fork optimized for near-field scanning optical microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.