Abstract

Feasibility of a piezoelectric unimorph thin-film actuator for optical fibre alignment was investigated. The main interest was focused on the fabrication, and electrical and mechanical characterization of a low-voltage driven component which was small-sized, efficient and suitable for integration into the low-temperature co-fired ceramic (LTCC) environment. Lead zirconate titanate (PZT) was chosen as ferroelectric thin-film material due to its excellent piezoelectric properties. A specific thin-film actuator structure was designed, modelled, and fabricated on silicon substrates. The structural, electrical and mechanical properties of the actuator structures were characterized, and the actuator structures were hybrid-integrated on LTCC substrates together with optical fibres to form a cantilever-type high-precision alignment device. Using a semiconductor laser diode as a light source, the alignment of an optical fibre was tested. Cantilever displacements up to 57??m were achieved enabling adjustability of optical power coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call