Abstract
The authors show that a high transverse piezoelectric response with both high piezoelectric d31 (d31=43.1pm∕V) and electromechanical coupling k31 coefficients (k31=0.187), much higher than those in the piezoelectric poly(vinylidene fluoride) and poly(vinylidene fluoride-trifluoroethylene) copolymers, can be obtained in poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)] 10wt% copolymers under quasistatic condition. Furthermore, the copolymers also display a higher d31 coefficient compared to the d33 coefficient, which seems to be unusual compared with most other piezopolymers. The experimental data suggest that the origin of the unusual piezoelectric response in these P(VDF-HFP) copolymers originates from a reversible change between a poled α-like structure and β-like structure. The phase change nature also results in a large frequency dispersion of the piezoelectric response and a smaller d31 (=20.5pm∕V) at 50kHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.