Abstract

We report the piezoelectric properties of CuO-doped hydrothermal (K,Na)NbO3 ceramics that can be applied as hard-type lead-free piezoelectric ceramics. To date, we have succeeded in synthesizing high-quality KNbO3 and NaNbO3 powders by the hydrothermal method, which is based on an ionic reaction at high temperature (around 210 °C) and pressure. Increasing both the piezoelectric constant d and the mechanical quality factor (Qm) is important for resonance-type piezoelectric devices, such as ultrasonic motors and transformers. CuO doping into hydrothermal (K,Na)NbO3 ceramics was examined to realize hard-type lead-free piezoelectric ceramics. By doping with 1.2 mol % CuO, Qm was increased and the dielectric loss (tan δ) was decreased to 0.5%. The grain size was also influenced by the amount of CuO doping, which indicates that Qm is related to the density. To achieve a higher Qm value, the grain size is required to be less than 5 µm; however, excessive CuO doping leads to anomalous grain growth. Optimal piezoelectric properties were obtained for 1.2 mol % CuO-doped (K,Na)NbO3; k31 = 0.32, d31 = -44 pC/N, Qm (radial) = 959, and tan δ= 0.5%. These characteristics showed that CuO doping with hydrothermal powders is effective for obtaining hard-type ceramics, and the mechanical quality factor is more than ten times higher than that of nondoped hydrothermal (K,Na)NbO3 ceramics. Therefore, compared with the conventional solid-state method, we could succeed in obtaining hard-type ceramics by a simple and short process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call