Abstract

Cantilevered piezoelectric harvesters have been extensively considered in the energy harvesting literature. Mostly, a traditional cantilevered beam with one or more piezoceramic layers is located on a vibrating host structure. Motion of the host structure results in vibrations of the harvester beam and that yields an alternating voltage output. As an alternative to classical cantilevered beams, this paper presents a novel harvesting device; a flexible L-shaped beam-mass structure that can be tuned to have a two-to-one internal resonance to a primary resonance ω2 ∼ 2ω1(which is not possible for classical cantilevers). The L-shaped structure has been well investigated in the literature of nonlinear dynamics since the two-to-one internal resonance, along with the consideration of quadratic nonlinearities, may yield modal energy exchange (for excitation frequency ω ∼ ω1) or the so-called saturation phenomenon (for ω ∼ ω2). As a part of our ongoing research on piezoelectric energy harvesting, we are investigating the possibility of improving the electrical outputs in energy harvesting by employing these features of the L-shaped structure. This paper aims to introduce the idea, describes the important features of the L-shaped harvester configuration and develops a linear distributed parameter model for predicting the electromechanically coupled response. In addition, this work proposes a direct application of the L-shaped piezoelectric energy harvester configuration for use as landing gears in unmanned air vehicle applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call