Abstract

Orthopedic implant failures, primarily attributed to aseptic loosening and implant site infections, pose significant challenges to patient recovery and lead to revision surgeries. Combining piezoelectric materials with ionic liquids as interfaces for orthopedic implants presents an innovative approach to addressing both issues simultaneously. In this study, films of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) incorporated with 1-ethyl-3-methylimidazolium hydrogen sulfate ([Emim][HSO4]) ionic liquid were developed. These films exhibited strong antibacterial properties, effectively reducing biofilm formation, thereby addressing implant-related infections. Furthermore, stem cell-based differentiation assays exposed the potential of the composite materials to induce osteogenesis. Interestingly, our findings also revealed the upregulation of calcium channel expression as a result of electromechanical stimulation, pointing to a mechanistic basis for the observed biological effects. This work highlights the potential of piezoelectric materials with ionic liquids to improve the longevity and biocompatibility of orthopedic implants. Offering dual-functionality for infection prevention and bone integration, these advancements hold significant potential for advancing orthopedic implant technologies and improving patient outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call