Abstract

Lead-free piezoelectric ceramics (1 − x)Bi0.5(Na0.84K0.16)0.5TiO3–xBa0.77Ca0.23TiO3 (BNKT–xBCT, x = 0–0.04) were synthesized by conventional solid-state reaction method. The piezoelectric, dielectric, and ferroelectric characteristics of the ceramics are investigated and discussed. The XRD results show that Ba0.77Ca0.23TiO3 (BCT) has diffused into Bi0.5(Na0.84K0.16)0.5TiO3 (BNKT) lattices to form a new solid solution. It is shown that moderate additive of BCT (x ≤ 0.025) in BNKT–xBCT ceramics can enhance their piezoelectric and ferroelectric properties. Three dielectric anomalies are observed in BNKT–xBCT (x ≤ 0.03) ceramics. The piezoelectric measurements and P–E hysteresis loops reveal that BNKT–0.025BCT ceramic has the highest piezoelectric performance and strongest ferroelectricity in all the samples. Piezoelectric constants d 33, k p, and k t of 175 pC/N, 29.1, and 54% are, respectively, achieved. Remnant polarization P r and coercive field E c reach 28.3 μC/cm2 and 24.2 kV/cm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.