Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an inherited vascular disorder characterized by arteriovenous malformations (AVMs). Loss-of-function mutations in Activin receptor-like kinase 1 (ALK1) cause type 2 HHT and Alk1 knockout (KO) mice develop AVMs due to overactivation of VEGFR2/PI3K/AKT signaling pathways. However, the full spectrum of signaling alterations in Alk1 mutants remains unknown and means to combat AVM formation in patients are yet to be developed. Single-cell RNA sequencing of endothelial-specific Alk1 KO mouse retinas and controls identified a cluster of endothelial cells (ECs) that was unique to Alk1 mutants and that overexpressed fluid shear stress (FSS) signaling signatures including upregulation of the mechanosensitive ion channel PIEZO1. PIEZO1 overexpression was confirmed in human HHT lesions, and genetic and pharmacological PIEZO1 inhibition was tested in Alk1 KO mice, as well as downstream PIEZO1 signaling. Pharmacological PIEZO1 inhibition, and genetic Piezo1 deletion in Alk1 -deficient mice effectively mitigated AVM formation. Furthermore, we identified that elevated VEGFR2/AKT, ERK5-p62-KLF4, hypoxia and proliferation signaling were significantly reduced in Alk1 - Piezo1 double ECKO mice. PIEZO1 overexpression and signaling is integral to HHT2, and PIEZO1 blockade reduces AVM formation and alleviates cellular and molecular hallmarks of ALK1-deficient cells. This finding provides new insights into the mechanistic underpinnings of ALK1-related vascular diseases and identifies potential therapeutic targets to prevent AVMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.