Abstract

Bismuth ferrite-based oxide nanostructures were chemically processed to offer an effective solution for the growing energy crisis and environment pollution by employing them as photoelectrodes for water splitting reactions and remediation of organic pollutants through photocatalysis. The influence of plasmonic effects via gold (Au) incorporating the physicochemical properties and their resulting impact on the application performance has been studied systematically. The processed materials were examined using X-ray diffraction (XRD), absorbance, and transmission electron microscopic instruments. Au interaction in the host BFO nanoparticle surface was affirmed through an in-depth examination of their photoelectron spectroscopic data. Plasmonic effect was also visualized in the absorbance spectra along with a significant change in the optical spectrum on Au decoration. Photoluminescence spectra approved the quality of defect states to be significantly influenced by the BFO nanoparticles and the Au nanoparticles influenced charge transmigration and separation. Enhanced photocatalytic and photoelectrochemical performance from the Au-decorated BFO nanostructures was evaluated through comparative analysis of pristine BFO. Time-dependent photocurrent density studies also proved the stability of processed photoelectrode materials in efficient water splitting via Au nanoparticles, which actually enhanced the charge transfer efficiency by offering improved conductivity as studied via Nyquist plots. The piezophotocatalysis activity of the nanocomposite exhibited a high degree of degradation of organic pollutants and better hydrogen production from water splitting reaction upon direct sunlight illumination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call