Abstract

We study a multi-objective multi-armed bandit problem in a dynamic environment. The problem portrays a decision-maker that sequentially selects an arm from a given set. If selected, each action produces a reward vector, where every element follows a piecewise-stationary Bernoulli distribution. The agent aims at choosing an arm among the Pareto optimal set of arms to minimize its regret. We propose a Pareto generic upper confidence bound (UCB)-based algorithm with change detection to solve this problem. By developing the essential inequalities for multi-dimensional spaces, we establish that our proposal guarantees a regret bound in the order of γTlog(T/γT) when the number of breakpoints γT is known. Without this assumption, the regret bound of our algorithm is γTlog(T). Finally, we formulate an energy-efficient waveform design problem in an integrated communication and sensing system as a toy example. Numerical experiments on the toy example and synthetic and real-world datasets demonstrate the efficiency of our policy compared to the current methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.