Abstract

Since the origins of artificial neural network research, many models of feedforward networks have been proposed. This paper presents an algorithm which adapts the shape of the activation function to the training data, so that it is learned along with the connection weights. The activation function is interpreted as a piecewise polynomial approximation to the distribution function of the argument of the activation function. An online learning procedure is given, and it is formally proved that it makes the training error decrease or stay the same except for extreme cases. Moreover, the model is computationally simpler than standard feedforward networks, so that it is suitable for implementation on FPGAs and microcontrollers. However, our present proposal is limited to two-layer, one-output-neuron architectures due to the lack of differentiability of the learned activation functions with respect to the node locations. Experimental results are provided, which show the performance of the proposal algorithm for classification and regression applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.