Abstract

Symmetric piecewise nonlinearities are employed here to design highly efficient nonlinear energy sink (NES). These symmetric piecewise nonlinearities are usually called in the literature as dead-zone nonlinearities. The proposed dead-zone NES includes symmetric clearance about its equilibrium position in which zero stiffness and linear viscous damping are incorporated. At the boundaries of the symmetric clearance, the NES is coupled to the linear structure by either linear or nonlinear stiffness components in addition to similar viscous damping to that in the clearance zone. By this flexible design of the dead-zone NES, we obtain a considerable enhancement in the NES efficiency at moderate and severe energy inputs. Moreover, the dead-zone NES is also found here through numerical simulations to be more robust for damping and stiffness variations than the linear absorber and some other types of NESs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.