Abstract
The performance of the nonlinear energy sink (NES) that composed of a small mass and essentially nonlinear coupling stiffness with a linear structure is considerably enhanced here by including the negative linear and nonlinear coupling stiffness components. These negative linear and nonlinear stiffness components in the NES are realized here through the geometric nonlinearity of the transverse linear springs. By considering these components in the NES, very intersecting results for passive targeted energy transfer (TET) are obtained. The performance of this modified NES is found here to be much improved than that of all existing NESs studied up to date in the literature. Moreover, nearly 99 % of the input shock energy induced by impulse into the linear structures considered here has been found to be rapidly transferred and locally dissipated by the modified NES. In addition, this modified NES maintains its high performance of shock mitigation in a broadband fashion of the input initial energies where it keeps its high performance even for sever input energies. This is found to be achieved by an immediate cascade of several resonance captures at low- and high- nonlinear normal modes frequencies. The findings obtained here by including the negative linear and nonlinear stiffness components are expected to significantly enrich the application of these stiffness components in the TET field of such nonlinear oscillators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.