Abstract
This paper presents a nonlinear scatter correction method, called piece-wise multiplicative scatter correction (PMSC), that is a further development of the multiplicative scatter correction (MSC) method. Near-infrared diffuse transmittance (NIT) data from meat and meat product samples were used to test the predictive performances of the PMSC and the MSC methods. With the use of PMSC, the prediction errors, expressed as the root mean square error of prediction (RMSEP), were improved by up to 36% for protein, up to 55% for fat, and up to 37% for water, in comparison to uncorrected data. The corresponding improvements by using PMSC compared to MSC were up to 22%, 24%, and 31% for protein, fat, and water, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.