Abstract
In this paper; three control approaches are utilized in order to control the stability of a novel five-degrees-of-freedom two-wheeled robotic machine designed for industrial applications that demand a limited-space working environment. Proportional–integral–derivative (PID) control scheme, bacterial foraging optimization of PID control method, and fuzzy logic control method are applied to the wheeled machine to obtain the optimum control strategy that provides the best system stabilization performance. According to simulation results, considering multiple motion scenarios, the PID controller optimized by bacterial foraging optimization method outperformed the other two control methods in terms of minimum overshoot, rise time, and applied input forces.
Highlights
For a tremendous amount of research studies, providing the ideal control strategy for inverted pendulum (IP)based systems has been and still remains a field of interest
Research objective and paper organization In order to provide the optimal control strategy for IPbased machines and to improve their stability performance, this paper sets a comparison between three control methods: PID controller, bacterial foraging optimization of PID controller, and fuzzy logic controller applied to control and stabilize a five-degrees-of-freedom (DOF) two-wheeled robotic machine (TWRM) introduced by Goher [24]
PD‐FLC control design For the five-DOF TWRM, the author propose a control scheme that consists of a robust PD-like fuzzy logic control strategy (FLC), as demonstrated in Fig. 6, with five independent control loops designed to control the vehicle for multiple-motion scenarios
Summary
For a tremendous amount of research studies, providing the ideal control strategy for inverted pendulum (IP)based systems has been and still remains a field of interest. Research objective and paper organization In order to provide the optimal control strategy for IPbased machines and to improve their stability performance, this paper sets a comparison between three control methods: PID controller, bacterial foraging optimization of PID controller, and fuzzy logic controller applied to control and stabilize a five-degrees-of-freedom (DOF) two-wheeled robotic machine (TWRM) introduced by Goher [24].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.