Abstract
The availability of tunable, picosecond free-electron lasers operating with high efficiency in the mid-infrared opens a materials-processing regime qualitatively distinct from that accessed by femtosecond Ti:sapphire lasers, one which is characterized by a high spatio-temporal density of vibrational, rather than electronic, excitation. As an example of this novel materials-processing regime, we present new results on pulsed laser deposition of thin poly(tetrafluoroethylene) films. Films of poly(tetrafluoroethylene) were deposited by resonant (4.2 and 8.26 μm) and non-resonant (7.1 μm) infrared picosecond laser ablation from either a pressed powder target or a commercial bulk target. The films were smooth and crystalline and largely free of particulates without annealing. Infrared and X-ray photoelectron spectra indicated that the films retained the chemical properties of the starting material. Observations of the film properties are consistent with a steady-state ablation mechanism, possibly enhanced by non-linear absorption due to the high photon flux in the free-electron laser micropulses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.