Abstract
Picosecond photodichroism (photoselection) measurements have been carried out on reaction centers from the facultative green photosynthetic bacterium Chloroflexus aurantiacus using weak 30 ps flashes in the long-wavelength band of the primary electron donor, P. Absorption changes due to the chemical and photochemical oxidation of P and the reduction of quinone also have been examined. Our results on Chloroflexus suggest that the Q y transition-dipoles of the bacteriopheophytin molecules participating in, or affected by, the primary reactions are oriented essentially perpendicular to the 865 nm transition dipole of P. This is in agreement with previous work on reaction centers from purple bacteria, such as Rhodopseudomonas sphaeroides. The data also suggest that the 812 nm ground-state transition is oriented at an angle of 45–65° with respect to the 865 nm transition. The new band that appears near 800 nm upon oxidation of P is polarized mainly parallel to the 865 nm band. These relative polarizations of the absorption bands are in very good agreement with the results of recent linear dichroism studies (Vasmel, H., Meiburg, R.F., Kramer, H.J.M., De Vos, L.J. and Amesz, J. (1983) Biochim. Biophys. Acta 724, 333–339). Possible origins for the absorption changes and the photodichroism spectra are discussed. The data are consistent with either a monomeric or dimeric structure of P-865.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.