Abstract

This paper discusses the mean-field limit for the quantum dynamics of N identical bosons in R3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extbf{R}}^3$$\\end{document} interacting via a binary potential with Coulomb-type singularity. Our approach is based on the theory of quantum Klimontovich solutions defined in Golse and Paul (Commun Math Phys 369:1021–1053, 2019) . Our first main result is a definition of the interaction nonlinearity in the equation governing the dynamics of quantum Klimontovich solutions for a class of interaction potentials slightly less general than those considered in Kato (Trans Am Math Soc 70:195–211, 1951). Our second main result is a new operator inequality satisfied by the quantum Klimontovich solution in the case of an interaction potential with Coulomb-type singularity. When evaluated on an initial bosonic pure state, this operator inequality reduces to a Gronwall inequality for a functional introduced in Pickl (Lett Math Phys 97:151-164, 2011), resulting in a convergence rate estimate for the quantum mean-field limit leading to the time-dependent Hartree equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call