Abstract
The citrus picking-point localization is critical for automatic citrus harvesting. Due to the complex citrus growing environment and the limitations of devices, the efficient citrus picking-point localization method becomes a hot research topic. This study designs a novel and efficient workflow for citrus picking-point localization, named as CPPL. The CPPL is achieved based on two stages, namely the detection stage and the segmentation stage. For the detection stage, we define the KD-YOLOP to accurately detect citrus fruits to quickly localize the initial picking region. The KD-YOLOP is defined based on a knowledge distillation learning and a model pruning to reduce the computational cost while having a competitive accuracy. For the segmentation stage, we define the RG-YOLO-seg to efficiently segment the citrus branches to compute the picking points. The RG-YOLO-seg is proposed by introducing the RGNet to extract efficient features and using the GSNeck to fuse multi-scale features. Therefore, by using knowledge distillation, model pruning, and a lightweight model for branch segmentation, the proposed CPPL achieves accurate real-time localization of citrus picking points. We conduct extensive experiments to evaluate our method; many results show that the proposed CPPL outperforms the current methods and achieves adequate accuracy. It provides an efficient and robust novel method for real-time citrus harvesting in practical agricultural applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have