Abstract

Efficient encapsulation of tetraethylenepentamine (TEPA), as an example aliphatic amine, was achieved by an emulsion-templated, in situ polymerization. Hydrophobically modified clay nanoplatelets were employed as emulsifiers to obtain water-in-oil (W/O) dispersions followed by interfacial polymerization between a portion of the TEPA cargo and polymethylene polyphenylene isocyanate (PMPPI). The resultant capsules exhibit spherical shape, desirable thermal stability, modest barrier properties, and shear-induced release in an epoxide monomer mixture. Most importantly, a significant gain in capsule barrier properties was realized by introducing poly(allyl amine) (pAAm) as an interface-selective reactive additive in the Pickering emulsions. In addition to the fundamental interest of pAAm localization and interface-selective reactivity, this microencapsulation system for aliphatic amines has technological potential in coating, self-healing, and drug-delivery applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call