Abstract

The effect of konjac glucomannan (KGM) on the stability and digestion characteristics of xanthan gum/lysozyme nanoparticles (XG/Ly NPs) stabilized Pickering emulsions was investigated. Results indicated that the high viscosity of KGM prompted the particles to be adsorbed toward the interface, which decreased the particle size and increased the stability of emulsions. As the concentration of KGM increased, the G′ and G″ of emulsions became larger and approached a “solid-like” state. When the KGM concentration was ≥0.2 %, the large amplitude sweeps of the emulsion exhibited a “weak strain overshoot”. The network structure formed by KGM molecular chain and particles was intertwined around the droplets to form a polysaccharide layer and fibrous network structure. Emulsions containing KGM showed a “spider web” epidermal network pattern. It was found by illumination for 4 h that samples with 0.2 % KGM concentration increased the retention of β-carotene by 18.74 %. KGM decreased the release rate of fatty acids and bioaccessibility by hindering bile salt and lipase adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.