Abstract
In this study, chitosan (CT) and naturally occurring acacia gum (AG) blends were employed as emulsifiers to form a series of emulsions developed from diesel and water. Effects of pH level (3, 5, 10, and 12) and various NaCl salt concentrations (0.25-1%) on the stability, viscosity, and interfacial properties of CT-(1%)/AG-(4%) stabilized Pickering emulsions were evaluated. Bottle test experiment results showed that the stability indexes of the CT/AG emulsions were similar under acidic (3 and 5) and alkaline (10 and 12) pH media. On the other hand, the effects of various NaCl concentrations on the stability of CT-(1%)/AG-(4%) emulsion demonstrated analogous behavior throughout. From all the NaCl concentrations and pH levels examined, viscosities of this emulsion decreased drastically with the increasing shear rate, indicating pseudoplastic fluid with shear thinning characteristics of these emulsions. The viscosity of CT-(1%)/AG-(4%) emulsion increased at a low shear rate and decreased with an increasing shear rate. The presence of NaCl salt and pH change in CT/AG solutions induced a transformation in the interfacial tension (IFT) at the diesel/water interface. Accordingly, the IFT values of diesel/water in the absence of NaCl/CT/AG (without emulsifier and salt) remained fairly constant for a period of 500 s, and its average IFT value was 26.16 mN/m. In the absence of salt, the addition of an emulsifier (CT-(1%)/AG-(4%)) reduced the IFT to 16.69 mN/m. When the salt was added, the IFT values were further reduced to 12.04 mN/m. At low pH, the IFT was higher (17.1 mN/M) compared to the value of the IFT (10.8 mN/M) at high pH. The results obtained will help understand the preparation and performance of such emulsions under different conditions especially relevant to oil field applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.