Abstract

An earlier directed evolution project using alkene reductase OYE 2.6 from Pichia stipitis yielded 13 active site variants with improved properties toward three homologous Baylis–Hillman adducts. Here, we probed the generality of these improvements by testing the wild-type and all 13 variants against a panel of 16 structurally-diverse electron-deficient alkenes. Several substrates were sterically demanding, and as hoped, creating additional active site volume yielded better conversions for these alkenes. The most impressive improvement was found for 2-butylidenecyclohexanone. The wild-type provided less than 20% conversion after 24h; a triple mutant afforded more than 60% conversion in the same time period. Moreover, even wild-type OYE 2.6 can reduce cyclohexenones with very bulky 4-substituents efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.