Abstract

Laser‐accelerated ion sources open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications. The mechanisms of proton acceleration with solid targets have been intensively studied over the past years, and new target or laser setups are now needed to obtain even higher maximum proton energies. PIC simulations have shown that using ultra thin targets, the maximum proton energy can be greatly increased. The laser can pass through the target and heat target electrons more efficiently. Experiments were conducted to test the feasibility of ultra thin targets laser interaction. PIC simulations were performed and successfully compared to the experimental results. Recently, experiments have shown that a gaseous target can produce proton beams with characteristics comparable to those obtained with solid targets. PIC simulations were also used to study proton acceleration with an underdense target. The optimum thickness obtained corresponds to the thickness where the laser absorption and transmission are equal, and depends greatly on laser and target parameters. The plasma hot electron temperature has also been found to depend on both laser and target parameters. We developed a simple model for the scaling of the optimum thickness for proton acceleration on target and laser parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.