Abstract

A two-dimensional PIC/MCC model is developed to simulate the nitrogen radio frequency hollow cathode discharge (rf-HCD). It is found that both the sheath oscillation heating and the secondary electron heating together play a role to maintain the rf-HCD under the simulated conditions. The mean energy of ions (N2+, N+) in the negative glow region is greater than the thermal kinetic energy of the molecular gas (N2), which is an important characteristic of rf-HCD. During the negative portion of the hollow electrode voltage cycle, electrons mainly follow pendulum movement and produce a large number of ionization collisions in the plasma region. During the positive voltage of the rf cycle, the axial electric field becomes stronger and its direction is pointing to the anode (substrate), therefore the ions move toward the anode (substrate) via the axial electric field acceleration. Compared with dc-HCD, rf-HCD is more suitable for serving as a plasma jet nozzle at low pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.