Abstract

The electric field in an ionization wave discharge in nitrogen at 20–100 mbar, initiated by positive polarity, high-voltage, ns duration pulses, is measured by ps second harmonic generation. The axial electric field component is determined both during the propagation of the ionization wave along the discharge tube, and after the wave reaches the grounded electrode, spanning the entire discharge gap. The temporal resolution of the present measurements is 200 ps, with the spatial resolution in the axial direction of approximately 0.5 mm. The second harmonic signal exhibits a quadratic dependence on the Laplacian electric field but indicates that in this pressure range most of the signal is generated within the wall of the tube. Absolute calibration of the signal is obtained from the current shunt data, after the ionization wave has reached the grounded electrode. Comparison of the data taken at different pressures shows that the peak value of the axial electric field in the wave front, 8–11 kV cm−1, has a fairly weak dependence on pressure, with the peak reduced electric field reaching ≈2000 Td at 20 mbar. Reducing the pressure from 100 to 20 mbar, while keeping the discharge pulse voltage waveform the same, steepens the ionization wave front considerably, from 3.0 to 1.0 ns full width at half maximum. The results demonstrate that ps second harmonic generation may be employed for electric field measurements in low-pressure discharges, discharges sustained in small diameter capillary tubes, and discharges sustained in gas mixtures with low nonlinear susceptibility, at the conditions when the detection of the signal generated directly in the plasma is challenging. High temporal resolution of the present measurements indicates a possibility of detection of non-local electron kinetics effects induced by a rapidly varying, high peak value electric field in low and moderate pressure ionization wave discharges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.