Abstract

Nanoplastics and metal oxide nanoparticles are serious threats that inevitably enter the environment. Their similar particle properties likely lead to interaction and thus cause more unpredictable ecotoxicity to organisms. In this study, it was found that polystyrene nanoplastics (PS NPs) aggravate the toxic effect of iron oxide nanoparticles (Fe2O3 NPs) on Lactuca sativa L. by inducing severe oxidative stress and root deformation, and the expansion of damaged cells from the xylem to the epidermis was observed using confocal laser scanning. Exposure to PS NPs + Fe2O3 NPs correspondingly elevated iron accumulation in the roots and leaves by 1.39 and 1.17 times compared to the amount observed with Fe2O3 NPs individually. Examination of the physicochemical properties, iron ion release, and molecular interactions of the NPs indicated that PS NPs interact with Fe2O3 NPs to form heteroaggregates and facilitate leaching of iron ions, which resulted in aggravating the toxic effect. These were alleviated by the addition of humic acid (HA), which dispersed the heteroaggregates and reduced the release of iron ions. The findings in the present study provide new perspectives for the ecotoxicological risk of binary nano-pollution in the natural environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.