Abstract

Background. Fish and rice are the main dietary sources of methylmercury (MeHg); however, rice does not contain the same beneficial nutrients as fish, and these differences can impact the observed health effects of MeHg. Hence, it is important to validate a biomarker, which can distinguish among dietary MeHg sources. Methods. Mercury (Hg) stable isotopes were analyzed in hair samples from peripartum mothers in China (n = 265). Associations between mass dependent fractionation (MDF) (δ202Hg) and mass independent fractionation (MIF) (Δ199Hg) (dependent variables) and dietary MeHg intake (independent variable) were investigated using multivariable regression models. Results. In adjusted models, hair Δ199Hg was positively correlated with serum omega-3 fatty acids (a biomarker for fish consumption) and negatively correlated with maternal rice MeHg intake, indicating MIF recorded in hair can be used to distinguish MeHg intake predominantly from fish versus rice. Conversely, in adjusted models, hair δ202Hg was not correlated with measures of dietary measures of MeHg intake. Instead, hair δ202Hg was strongly, negatively correlated with hair Hg, which explained 27-29% of the variability in hair δ202Hg. Conclusions. Our results indicated that hair Δ199Hg can be used to distinguish MeHg intake from fish versus rice. Results also suggested that lighter isotopes were preferentially accumulated in hair, potentially reflecting Hg binding to thiols (i.e., cysteine); however, more research is needed to elucidate this hypothesis. Broader impacts include 1) validation of a non-invasive biomarker to distinguish MeHg intake from rice versus fish, and 2) the potential to use Hg isotopes to investigate Hg binding in tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.