Abstract

AbstractHighly stable semiconducting silver doped zinc oxide nanoparticles have been synthesized via facile, biomimetic and sustainable route, through utilization of Zinc acetate dihydrate (C4H6O4Zn · 2H2O) as host, Silver nitrate (AgNO3) as dopant and phytochemicals of angiospermic medicinal plantPrunus cerasiferaas the reducing agents. Synthesis of Ag doped ZnO nanoparticles was done in a one pot synthetic mode by varying the amount of dopant from 0.2 – 2.0%. Synthesized photocatalyst nanoparticles were analyzed via UV-vis, FTIR, XRD and SEM. Commendable alleviation in the direct band gap i.e. 2.81 eV was achieved as a result of doping. Silver doped zinc oxide nanoparticles size ranged between 72.11 – 100 nm with rough surface morphology and higher polydispersity degree. The XRD patterns revealed the hexagonal wurtzite geometry of crystals with an average crystallite size of 2.99 nm. Persistent organic dyes Methyl Orange, Safranin O and Rhodamine B were sustainably photodegraded in direct solar irradiance with remarkable degradation percentages up to 81.76, 74.11 and 85.52% in limited time with pseudo first order reaction kinetics (R2=0.99, 0.99 and 0.97). Furthermore, efficient inhibition against nine microbes of biomedical and agriculturally significance was achieved. Synthesized nanoparticles are potential green remediators of polluted water and perilous pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.