Abstract

Rhizobacterial dynamics, relating to pollutant degradation mechanisms, over the course of plant lifespan have rarely been reported when using phytoremediation technologies for pharmaceutical-contaminated wastewater treatment. This study investigated the rhizobacterial dynamics of Typha angustifolia in constructed wetlands to treat ibuprofen (IBP)-polluted wastewater throughout plant development from seedling, vegetative, bolting, mature, to senescent stages. It was found that conventional pollutant and IBP removals increased with plant development, reaching to the best performance at bolting or mature stage (removal efficiencies: 92% organics, 52% ammonia, 60% phosphorus and 76% IBP). In the IBP-stressed wetlands, the rhizobacterial diversity during plant development was adversely affected by IBP accompanied with a reduced evenness. The bacterial communities changed dynamically at different developmental stages and showed significant differences compared to the control wetlands (free of IBP). The dominant bacteria colonized in the rhizosphere was the phylum Actinobacteria, having a final relative abundance of 0.79 and containing a large amount of genus norank_o__PeM15. Positive interactions were evident among the rhizobacteria in IBP-stressed wetlands and the predicted functions of 16S rRNA genes revealed the potential co-metabolism and metabolism of IBP. The co-metabolism of IBP might be related to root exudates such as amino acid, lipid, fatty acid and organic acid. In addition, positive correlations between the organic compounds of interstitial water (bulk environment) and the rhizobacterial communities were observed in IBP-stressed wetlands, which suggests that the influence of IBP on bulk microbiome might be able to modulate rhizosphere microbiome to achieve the degradation of IBP via co-metabolism or metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.