Abstract

The present study was aimed to investigate the antibacterial efficacy of fucoidan mediated silver nanoparticles (Fu-AgNPs) synthesized from Spatoglossum asperum. The synthesized Fu-AgNPs were characterized by UV–visible, Field emission - scanning electron microscope (FE-SEM), Tranmission electron microscope (TEM), X-ray diffraction (XRD), Selected area electron diffraction (SAED) pattern, Energy-dispersive X-ray spectroscopy (EDAX), Fourier transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS) and Zeta potential analysis. The UV–visible spectrum of Fu-AgNPs exhibited a characteristic surface plasmon resonance (SPR) peak at 440 nm. The electron microscopic results revealed that the nanoparticles were spherical to oval in shape and are found to be 20 to 46 nm. Altogether the X-ray diffraction analysis showed that the Fu-AgNPs were crystalline in nature. The FT-IR spectrum confirmed the existence of CC stretching vibration of aromatic compounds and sulfated groups of fucoidan plays a major role in the synthesis of Fu-AgNPs. The biosynthesized Fu-AgNPs shows potential antibacterial activity against Klebsiella pneumoniae in agar bioassay, disk diffusion, reactive oxygen species, protein leakage and confocal laser scanning microscopy assays. Furthermore, Artemia toxicity assay results showed less mortality (3.3 ± 0.8%) even at higher concentration of Fu-AgNPs. Therefore, Fu-AgNPs can be effectively used as an antibacterial agent in the pharmaceutical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call