Abstract

BackgroundThe present study identified, quantified, and characterized the combinations of phytocomponents from fractionated leaf extracts of Anacardium occidentale, Psidium guajava, and Terminalia catappa that stabilized sickle erythrocyte membrane against osmotic stress, or otherwise, using standard chromatographic-spectrophotometric techniques, namely GC-MS, FT-IR, and UV-visible systems.ResultsThe percentage hemolysis of the control sample, in 0.9 g/100 mL NaCl, was 35.08 ± 11.64%, whereas those of the samples containing 40 mg/100 mL, 60 mg/100 mL, and 80 mg/100 mL of ethylacetate extracts of T. catappa ranged between 31.82 ± 8.32 and 39.18 ± 6.94%. Ethylacetate extract of T. catappa contained comparative high quantities of hexadecanoic acid methyl ester, 9,11-octadecadienoic acid, methyl ester, (E, E)-, trans-13-octadecenoic acid methyl ester, and methyl stearate. FT-IR and UV-visible spectra showed that ethylacetate extract of T. catappa contained aromatic compounds as well as nitro-compounds, phenolics, and esters.ConclusionTo mention but a few, the combinations of major phytocomponents that stabilized sickle erythrocyte membrane against osmotic stress were hexadecanoic acid, methyl ester, 11-octadecenoic acid, methyl ester, dibutyl phthalate, pentacosane, trans-13-octadecenoic acid, methyl ester, whereas the minor phytocomponents include methyl tetradecanoate, methoxyacetic acid, 3-pentadecyl ester, methyl stearate, hexadecanoic acid, isoxazole, 4,5-dimethyl-.

Highlights

  • The present study identified, quantified, and characterized the combinations of phytocomponents from fractionated leaf extracts of Anacardium occidentale, Psidium guajava, and Terminalia catappa that stabilized sickle erythrocyte membrane against osmotic stress, or otherwise, using standard chromatographicspectrophotometric techniques, namely gas chromatography-mass spectroscopy (GC-MS), Fourier transform-infrared spectroscopy (FT-IR), and UV-visible systems

  • In view of the established relatively high fragility of sickle erythrocytes and medicinal usefulness of vast array of phytocomponents, the present study investigated the capacities of fractionated leaf extracts of A. occidentale, P. guajava, and T. catappa to stabilize sickle erythrocyte membrane against osmotic stress using in vitro models

  • 4.1 Percentage yields of fractionated leaf extracts The aggregate yields of the fractionated leaf extracts, which include petroleum ether, n-hexane, chloroform, ethylacetate, and residual aqueous extracts were as follows: A. occidentale (13.017 g per 100 g dry leaf sample), P. guajava (9.627 g per 100 g dry leaf sample), and T. catappa (10.060 g per 100 g dry leaf sample)

Read more

Summary

Introduction

The present study identified, quantified, and characterized the combinations of phytocomponents from fractionated leaf extracts of Anacardium occidentale, Psidium guajava, and Terminalia catappa that stabilized sickle erythrocyte membrane against osmotic stress, or otherwise, using standard chromatographicspectrophotometric techniques, namely GC-MS, FT-IR, and UV-visible systems. The leaves of P. guajava contain substantial quantity of lectin, which is why the leaf extract is used as herbal remedies for intestinal infections caused by pathogens like Escherichia coli [9, 10]. Previous reports showed that mature leaf extracts of P. guajava exhibited antimicrobial properties due to their substantial content of flavonoids, namely quercetin-3-O-α-L-arabinofuranoside, quercetin-3-O-β-D-arabinofuranoside, quercetin-3-O-β-D-glucoside, quercetin-3-O-β-D-galactoside, and quercetin-3-O-β-D-arabinofuranoside [11] along with the presence of squalene and azulene, which are antifungals [12]. The diverse medicinal usefulness of decoctions of guava leaves has been extensively reported elsewhere [11, 13,14,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call