Abstract

Red light controls cell elongation in seedlings of rice (Oryza sativa L.) in a far-red-reversible manner (Nick and Furuya, 1993, Plant Growth Regul.12, 195–206). The role of gibberellins and microtubules in the transduction of this response was investigated in the rice cultivars Nihon Masari (japonica type) and Kasarath (indica type). The dose dependence of mesocotyl elongation on applied gibberellic acid (GA3) was shifted by red light, and this shift was reversed by far-red light. In contrast, coleoptile elongation was found to be independent of exogenous GA3. Nevertheless, it was inhibited by red light, and this inhibition was reversed by far-red light. The content of the active gibberellin species GA1 and GA4 was estimated by radio-immunoassay. In the mesocotyl, the gibberellin content per cell was found to increase after irradiation with red light, and this increase was far-red reversible. Conversely, the cellular gibberellin content injaponica-type coleoptiles did not exhibit any significant light response. Microtubules reoriented from transverse to longitudinal arrays in response to red light and this reorientation could be reversed by subsequent far-red light in both the coleoptile and the mesocotyl. This movement was accompanied by changes in cell-wall birefringence, indicating parallel reorientations of cellulose deposition. The data indicate that phytochrome regulates the sensitivity of the tissue towards gibberellins, that gibberellin synthesis is controlled in a negative-feedback loop dependent on gibberellin effectiveness, and that at least two hormone-triggered signal chains are linked to the cytoskeleton in rice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call