Abstract

The red light-sensing photoreceptor FphA from Aspergillus nidulans is involved in the regulation of developmental processes in response to light. Here we present extended biochemical and spectroscopic characterization of recombinant FphA using a synthetic gene with host-adapted codon usage. The recombinant photosensory domain FphAN753 was shown to display all features of a bona fide phytochrome. It covalently binds biliverdin as chromophore and undergoes red/far-red light-inducible photoconversion with both parent states being protonated. The large N-terminal variable extension of FphA exerts a stabilizing effect on the active Pfr state. Upon substitution of the highly conserved histidine 504, involved in the hydrogen-bonding network of the protein moiety and the chromophore, chromophore attachment and photoreversibility were completely impaired. FphA is a functional sensor histidine kinase with a strong red-light-dependent autophosphorylation activity. Furthermore, intermolecular trans-phosphorylation to the response regulator domain of a second monomer could be demonstrated. Interestingly, co-incubation of FphA and FphA variants led to enhanced autophosphorylation, including the "inactive" Pr form. The latter observed phenomenon might suggest that auto- and trans-phosphorylation activity is modulated by additional interaction partners leading to variable phosphorylation events that trigger a specific output response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.