Abstract

The current study aimed to appraise extracts of Cleome simplicifolia (Cambess.) Hook. f. and Thomson leaves for chemical integrant and biological activities. In this study, different extracts of leaves were estimated for qualitative phytochemical screening, identification of functional groups, mineral content, and phyto-compounds and assessed for in vitro antioxidant and in vivo acute toxicity and hepatoprotective activity antagonistic toward paracetamol-intoxicated Wister albino rats. The results of the qualitative phytochemical assessment of the leaf extracts (acetone, methanol, and distilled water) exhibited the occurrence of useful metabolites. A Fourier transform infrared analysis confirmed the occurrence of O-H, N-H, C=C, S=O, C-O, C-N, C-Cl, and C-Br at 3367.14, 2920.79, 2850.32, 1631.04, 1384.59, 1168.64, 1063.78, 824.78, and 615.25 cm−1 wavelengths, whereas energy-dispersive X-ray showed the existence of carbon, oxygen, magnesium, aluminum, silicon, phosphorus, sulfur, chlorine, potassium, and calcium elements in the leaf, respectively. Thereafter, a gas chromatography–mass spectroscopy analysis unveiled the diverse volatile compounds in the methanolic leaf extracts, namely n-Heptyl acrylate—18.87%, undecane—17.49%, 2-Propenoic acid, 3-(3,4-dimethoxyphenyl)-, (E)—11.40%, Neophytadiene—11.02%, n-Hexadecanoic acid—10.78%, Glafenin—10.09%, Decane—7.45%, Phytol—6.0%, Benzene, (1-methyldodecyl)—3.48%, and 4-Cyclohexyl-1-butanol—3.41%, respectively. An analysis of in vitro antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl assay of methanolic leaf extract revealed elevated levels of antioxidant ability at 20 (46.18%), 40 (53.83%), 60 (66.64%), 80 (74.03%), and 100 (85.05%) μg/mL. In addition, in vivo acute toxicity determination proved that the methanolic leaf extract was innocuous and caused no mortality at 72 mg, 78 mg, or 82 mg/kg b.wt. doses. The methanolic leaf extracts’ in vivo hepatoprotective activity against paracetamol revealed significant efficacy at 50 and 100 mg/kg b.wt. via reduction of aspartate transaminase, alanine transaminase, alkaline phosphatase, bilirubin, and cholesterol (serum blood biochemical markers) followed by an enhancement in superoxide dismutase, catalase, and glutathione (liver antioxidants) with lipid peroxidation depletion compared with the normal group rats. From the investigated study, it was concluded that the C. simplicifolia leaf are a potential source for the isolation of biologically active phyto-compounds and have the ability to prevent liver damage by paracetamol induction, where the hepatic restoration ability is indexed to its in vivo and in vitro antioxidant ability, which might be the result of its chemical constituents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call