Abstract

Ethnopharmacological relevanceMalaria is a major global health concern that is presently challenged by the emergence of Plasmodium falciparum (Pf) resistance to mainstay artemisinin-based combination therapies (ACTs). Hence, the discovery of novel and effective antimalarial drugs is pivotal to treating and controlling malaria. For many years, traditional plant-based herbal medicines have been employed in the treatment of various illnesses. Rotheca serrata (L.) Steane & Mabb. belongs to the Lamiaceae family that has been traditionally used to treat, cure, and prevent numerous diseases including malaria. AimThe present investigation sought to assess the phytoconstituents, antioxidant, cytotoxicity, antimalarial activities of Rotheca serrata extract and its fractions. The in vitro antiplasmodial activity was assessed in chloroquine-sensitive Pf3D7 and artemisinin-resistant PfCam3.IR539T cultures, and the in vivo antimalarial activity was analyzed in Plasmodium berghei (Pb) ANKA strain-infected BALB/c mouse model. Materials and methodsThe fresh leaves of Rotheca serrata were extracted in methanol (RsMeOH crude leaf extract). A portion of the extract was used to prepare successive solvent fractions using ethyl acetate (RsEA) and hexane (RsHex). The in vitro antiplasmodial activity was evaluated using [3H]-hypoxanthine incorporation assays against Pf3D7 and PfCam3.IR539T cultures. In vitro cytotoxicity study on HeLa, HEK-293T, and MCF-7 cell lines was carried out using MTT assay. The human red blood cells (RBCs) were used to perform the hemolysis assays. In vitro antioxidant studies and detailed phytochemical analysis were performed using GC-MS and FTIR. The four-day Rane's test was performed to evaluate the in vivo antimalarial activity against Pb ANKA strain-infected mice. ResultsPhytochemical quantification of Rotheca serrata extract (RsMeOH) and its fractions (RsEA and RsHex) revealed that RsMeOH crude extract and RsEA fraction had higher contents of total phenol and flavonoid than RsHex fraction. The RsEA fraction showed potent in vitro antiplasmodial activity against Pf3D7 and PfCam3.IR539T with IC50 values of 9.24 ± 0.52 μg/mL and 17.41 ± 0.43 μg/mL, respectively. The RsMeOH crude extract exhibited moderate antiplasmodial activity while the RsHex fraction showed the least antiplasmodial activity. The GC-MS and FTIR analysis of RsMeOH and RsEA revealed the presence of triterpenes, phenols, and hydrocarbons as major constituents. The RsMeOH crude extract was non-hemolytic and non-cytotoxic to HeLa, HEK-293T, and MCF-7 cell lines. The in vivo studies showed that a 1200 mg/kg dose of RsMeOH crude extract could significantly suppress parasitemia by ∼63% and prolong the survival of treated mice by ∼10 days. The in vivo antiplasmodial activity of RsMeOH was better than the RsEA fraction. ConclusionThe findings of this study demonstrated that traditionally used herbal medicinal plants like R. serrata provide a platform for the identification and isolation of potent bioactive phytochemicals that in turn can promote the antimalarial drug research. RsMeOH crude extract and RsEA fraction showed antiplasmodial, antimalarial and antioxidant activities. Chemical fingerprinting analysis suggested the presence of bioactive phytocompounds that are known for their antimalarial effects. Further detailed investigations on RsMeOH crude extract and RsEA fraction would be needed for the identification of the entire repertoire of the active antimalarial components with potent pharmaceutical and therapeutic values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call